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Abstract

Inhalation of agricultural occupational dusts from swine confinement facilities can result in lung 

inflammation. The innate immune response to organic barn dusts results in production of a number 

of pro-inflammatory factors in the lungs of barn workers such as cytokines, chemokines, and an 

influx of neutrophils. Many of these inflammatory factors are influenced by the chemokine 

CXCL8/IL-8 (KC or MIP-2 in mice). Previously, we have demonstrated that an endotoxinin-

dependent component of swine barn dust extract (SBE) elevates lung chemokines in a protein 

kinase C (PKC)-dependent manner resulting in the significant formation of lung inflammatory cell 

infiltrates in a mouse model of SBE injury. In this study we test the ability of a CXCR1/CXCR2 

antagonist, CXCL8(3-74)K11R/G31P (G31P) to block many of the features of lung-inflammation 

in response to challenge with SBE in an established mouse exposure system. Injection of G31P 

concurrent with SBE nasal instillation over a course of 3 weeks significantly reduced neutrophil 

accumulation in the lungs of barn dust exposed animals compared to those given SBE alone. 
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There was a similar reduction in pro-inflammatory cytokines and chemokines IL-6, KC, and 

MIP-2 in SBE plus G31P-treated mice. In addition to excreted products, the receptors ICAM-1, 

CXCR1, and CXCR2, which all were elevated with SBE exposure, were also decreased with 

G31P treatment. SBE activation of PKCα and PKCε was reduced as well with G31P treatment. 

Thus, G31P was found to be highly effective at reducing several features of lung inflammation in 

mice exposed to barn dust extracts.

Introduction

Workers in animal confinement facilities are at a greater risk for contracting a variety of 

lung disorders such as chronic bronchitis, acute respiratory distress syndrome (ARDS), 

hypersensitivity pneumonitis, as well as developing asthma or COPD (Iversen et al. 2000, 

283–288; Radon et al. 2001, 405–410). Those even acutely exposed to these environments 

show clear signs of airway inflammation (Cormier et al. 1997, 1516–1522; Wang et al. 

1997, 381–387). Work by several groups has shown that organic dust inhalation from these 

facilities is associated with these symptoms (Cormier et al. 1997, 1516–1522; Dosman et al. 

2006, 761–766). The inflammation seen in response to these dusts is the result of innate 

immune responses to bacterial components from these facilities such as proteoglycans and 

endotoxin. In particular the toll-like receptors (TLRs) TLR2 and TLR4 are crucial to organic 

dust responses (Poole and Romberger 2012, 126–132). Signaling through these receptors 

results in the expression of an array of cytokines and chemokines, in particular the potent 

pro-inflammatory chemokine IL-8 (CXCL8).

PKCα and PKCε play a critical role in the inflammatory response to barn dust (Wyatt et al. 

2010, 706–715). Barn dust stimulates a sequential activation of PKC isoforms and cytokines 

in isolated airway epithelial cells. PKCα is activated within an hour and is required for 

TNFα and IL-6 production. TNFα precedes IL-6 production and subsequently activates 

PKCε, which is required for eventual IL-8 production several hours later. The effects of 

PKCs extend beyond just cytokines as cell surface adhesion markers responsible for 

neutrophil migration such as ICAM-1 are also up-regulated in response to PKCα activation 

(Mathisen et al. 2004, 1738–1744). Thus the activity of both protein kinases is critical to 

inflammation in response to barn dust.

The receptors for IL-8 in humans are the chemokine receptors CXCR1 and CXCR2. Both 

are high-affinity receptors for IL-8, but are capable of binding other chemokines (Ahuja, 

Lee, and Murphy 1996, 225–232; Fan et al. 2007, 11658–11666). In the mouse, IL-8 is 

functionally replaced by keratinocyte factor (KC) and MIP-2 (Lee et al. 1995, 2158–2164; 

Fan et al. 2007, 11658–11666) that bind these same CXCR1 and CXCR2 receptors (Fan et 

al. 2007, 11658–11666). A wide variety of cells are known to express either CXCR1 or 

CXCR2 and thus be signaled by these chemokines. Binding of IL-8 to CXCR1 or CXCR2 

can produce a host of chemotactic and antimicrobial responses resulting in increased 

neutrophil recruitment into the lung (Murphy 1997, 311–318; Tateda et al. 2001, 2017–

2024; Feniger-Barish et al. 1999, 996–1009). Therefore, successful blocking of CXCR1 and 

or CXCR2 is of great therapeutic interest for the control of inflammation. Indeed, there are 

currently CXCR2 agonists under development for diseases such as cystic fibrosis, 
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neutrophilic asthma and COPD that have been studied in human models of LPS (Leaker, 

Barnes, and O’Connor 2013, 137-9921-14-137) and ozone exposure (Lazaar et al. 2011, 

282–293; Holz et al. 2010, 564–570).

The IL-8 analog, G31P, has been shown to antagonize neutrophil migration and can bind 

CXCR1 and CXCR2 with a higher affinity than even IL-8 (Li, Zhang, and Gordon 2002, 

939–944). As IL-8 has a higher affinity for CXCR1 and CXCR2 than other ELR-CXC 

chemokines, it has been suggested that G31P may block most chemokine binding to these 

receptors (Li, Zhang, and Gordon 2002, 939–944). In a bovine system G31P has been shown 

to be effective at reducing cytokine production and neutrophil migration in response to LPS 

(Gordon et al. 2005, 1265–1272).

As exposure to organic dust results in significant IL-6 and KC production and neutrophilia 

in the lung (Poole et al. 2009, L1085–95), we hypothesized that G31P could effectively 

inhibit chemokine responses in a mouse model of organic swine barn dust extract (SBE) 

exposure. We also looked at commonly induced features of barn dust exposure such as 

activation of signaling molecules (PKCα and PKCε) and increased cell migration (lavage 

cell counts and ICAM-1 expression). We show here that G31P was useful in reducing 

neutrophilia in mice exposed to SBE. Lung responses also showed reductions in the 

cytokines, chemokines, and activation of PKC isoforms measured. Finally, the expression of 

ICAM-1, CXCR1, and CXCR2 appeared elevated by SBE exposure but were reduced in a 

number of cell types in the lungs of mice receiving G31P. Taken together we show G31P is 

a potent inhibitor of the innate immune response to barn dust.

Materials and Methods

Hog confinement dust extract preparation

Extracts were created as described previously (Mathisen et al. 2004, 1738–1744) from 

settled dust collected from hog confinement buildings. Briefly, SBE was made by mixing 10 

g of collected dust in 10 ml PBS (Dulbecco’s phosphate buffered saline, pH 7.4, Gibco, 

Frederick, MD) without calcium at room temperature for 1 hr. The mixture was then 

centrifuged 10 min, and supernatant saved and centrifuged a second time for 10 min before 

sterile filtering the supernatant. The barn dust used has been previously characterized (Poole 

et al. 2010, 684–700) as containing protein (1–2 mg/ml), endotoxin (22.5–48.75 EU/ml), 

and muramic acid (400 pmol/mg) in a 5% extract. A variety of bacterial sources 

(Clostridium ssp., Lactobacillus ssp., Ruminococcus ssp., and Eubacterium ssp.) contribute 

these toxins as recently characterized (Boissy et al. 2014, e95578).

Mouse exposure to SBE

All animal procedures were approved by the Institutional Animal Care and Use Committee 

of the University of Nebraska Medical Center. Female 6–8 weeks old C57BL/6 mice 

(Charles River, Wilmingtom, MA), were acclimated to facilities for one week after arrival. 

The animals were group-housed, and their diet consisted of commercial rodent chow and 

water ad libitum. Mice were weighed weekly and no significant changes in body weight 

were observed under any experimental condition (data not shown). Mice were assigned 
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randomly to each of the treatment groups: control, control + G31P administration, SBE 

instillation (12.5%), or SBE instillation + G31P. All mice (4 per group) were instilled 

nasally (Bailey et al. 2008, L1049–L1054) with 50 μl of treatment once every day for 5 days 

a week (Monday to Friday) for 3 weeks. Mice given G31P were injected peritoneally with 

250 μg/kg every 2 days. At end of study, mice were sacrificed by injection with sodium 

pentobarbital (100 μl, 75mg/ml). The experiment was conducted twice, one week apart, and 

data pooled.

Bronchiolar alveolar lavage (BALF) collection

Lungs were lavaged as described previously (Poole et al. 2009, L1085–95). Briefly, lungs 

were washed three times with 1 ml sterile saline each time. Lavage fluid was centrifuged 

1750g for 10 min and supernatant stored at −80°C prior to ELISA analysis. Cells were 

resuspended in 1 ml PBS, counted, and 1.5 × 103 cells were adhered to glass slides via 

cytospin onto glass slides. Cells were stained using a Diff-Quik kit (Siemens Healthcare 

Diagnostics, Newark, DE) and cover slips mounted. A differential count of at least 300 cells 

was made based on morphometric criteria and expressed as absolute cell numbers (mean +/− 

SEM).

Histology and immunohistochemical staining

After bronchoalveolar lavage, lungs were inflated with 10% buffered formalin and hung 

under 17 cm H2O pressure for 24 hr, after which they were placed in formalin for an 

additional 48 hr. Sections were cut at 5 mm thickness for staining. Sections were 

deparaffinized in Protocol Safeclear II (Fisher Scientific, Kalamazoo, MI) and rehydrated 

through an ethanol gradient (100%, 95%, 80%, 50%) and rinsed. One set of slides was 

stained with hematoxylin and eosin for histological examination while others were used for 

immunohistochemical examination.

For immunohistochemistry, antigen unmasking was accomplished by incubating slides in 

Diva Decloaker solution (Biocare Medical, Concord, CA) at 98°C for 20 min, followed by 

an additional 20 min where the solution was allowed to slowly cool to room temperature. 

After further rinsing in PBS, slides were blocked 30 min at room temperature in 5% skim 

milk in PBS. Antibodies to CXCR1 (Bioss, Woburn MA) or CXCR2 (Abcam, Cambridge 

MA) were subsequently added in 5% skim milk at 1:50 concentration and slides incubated 

overnight at 4° C. After washing the next day with PBST (PBS + 0.05% Tween-20 pH 7.4), 

slides were incubated with biotinylated rabbit anti-goat antibody (goat anti-rabbit-HRP, 

Jackson Immunoresearch, West Grove, PA) at 1:50 concentration overnight at 4° C. Slides 

were washed in PBS then developed with ImmPACT DAB kit (Vector, Burlingame, CA) for 

3 min and counterstained with Harris-modified hematoxylin (Fisher Scientific, FairLawn, 

NJ) before being dehydrated through an ethanol gradient and fixed with Safeclear II. 

Samples were mounted using Cytoseal XYL (Thermo Scientific, Kalamazoo MI). For 

CD54/ICAM-1, staining was completed as mentioned previously (Poole et al. 2009, L1085–

95). Briefly, blocking was done overnight at 4° C, with primary antibody added at 1:75 (rat 

anti-mouse ICAM-1; Rockland Immunochemicals, Gilbertsville, PA) and incubated for 1 hr 

at room temperature, and secondary (rat anti-CD54, 1:300; Biolegend, San Diego, CA) for 2 

hr.
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PKC activity

Lung trachea was taken from mice after lavage was completed. These trachea were flash 

frozen in cell lysis buffer as described (Wyatt et al. 2000, 91–97). Bronchial epithelial cells 

were sonicated and centrifuged 10000 × g for 30 min at 4° C and supernatant and pellet 

separated and resuspended in cell lysis buffer with 0.01% Triton X-100. Assay for isoforms 

α and ε of PKC in each fraction were carried out as previously described (Wyatt et al. 2007, 

L1163–L1170) and read by scintillation counter.

Cytokine and chemokine quantitation

Cytokine and chemokine quantitation of BALF fluid was done by enzyme linked 

immunoabsorbant assay kits to IL-6, KC, and MIP-2 (R&D Systems, Minneapolis, MN), 

according to manufacturer’s instructions.

Statistical analysis

All data was analyzed using GraphPad Prism (GraphPad Software, San Diego, CA). Graph 

bars represent the mean +/− SE of three replicate experiments performed in triplicate (n=3). 

Statistical significance was determined using ANOVA, with 95% confidence interval being 

considered significant.

Results

BALF cell population

Cells in BALF were counted and identified to determine migration of both number and type 

of cells into the alveoli. SBE significantly increased the overall number of cells in BALF 

(Fig. 1A). However, pre-treatment of SBE-treated animals with G31P significantly 

(p<0.001) reduced the number of these cells, though the number of cells was still higher than 

non-SBE treated control groups. When the type of cells present was determined (Fig. 1B), 

control and G31P-only treated animals had BALF cellular populations that were almost 

entirely macrophages. With SBE treatment, this population however became dominated by 

neutrophils, accounting for a large proportion of the overall increase in BALF total cell 

numbers. Pre-treatment of SBE-treated animals with G31P significantly (p<0.001) reduced 

the percentage of neutrophils within the BALF cell population compared to SBE-only 

treated mice. G31P pretreatment did not completely abrogate the number of neutrophils 

present compared to control groups.

Cytokine and chemokine expression to SBE is decreased with G31P

Because G31P significantly reduced the numbers of neutrophils in the BALF in response to 

SBE, we determined whether G31P caused changes in SBE-stimulated chemotactic 

cytokines. Control and Control + G31P treated animals produced little to near undetectable 

amounts of either KC or MIP-2 (Fig. 2A and 2B) in their BALF, whereas treatment with 

SBE caused a significant increase in both. SBE-instilled mice treated with G31P showed a 

significant (p<0.001) drop in the expression of each chemokine, though not a total 

elimination of either. Another indicator of inflammation, IL-6 (Fig. 2C), followed the same 

pattern (p<0.01) of expression as KC and MIP-2.
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G31P blocks stimulation of PKCα and PKCε activity in lung tissue

Airway epithelial cells harvested from tracheal tissue of mice and precisioncut lung slices 

were tested for catalytic PKC activity. Past work has shown that PKC activation is also a 

feature of SBE exposure (Wyatt et al. 2007, L1163–L1170; Romberger et al. 2002, 289–

296). Mice exposed to SBE showed clearly significant (p<0.01) PKCα and PKCε activation 

(Fig. 3A and 3B respectively) in both tracheal epithelial cells and precision-cut lung slices 

(Fig. 3C and 3D respectively). In contrast those exposed to SBE that were given G31P 

showed minimal activity of either kinase.

Histological Examination

Examination of lung sections that were stained with hematoxylin and eosin revealed no 

apparent increases in lung infiltration in the control (Fig 4A) or control + G31P (Fig. 4B) 

treated animals. Animals that were given SBE however showed clear indications of 

increased cellularity in the alveoli as well as formation of foci of peribronchial mononuclear 

cells (Fig 4C, arrow), typical of such dust instillations into these animals. SBE + G31P 

treated animals showed some increase in cellular infiltration over controls similar to the SBE 

treated mice, but few if any mononuclear foci were apparent (Fig. 4D). This demonstrates 

that G31P was effective at blocking formation of these dust-induced mononuclear cell 

aggregates.

Expression of CD54/ICAM-1 is reduced by G31P

Work by others has shown that ICAM-1 is increased in the bronchial epithelium after 

exposure to barn dust (Mathisen et al. 2004, 1738–1744), and as an important neutrophil 

chemotactic factor may play a role in neutrophil migration (Reviewed in Springer 1994, 

301–314). Staining of the bronchial epithelium of mouse lungs using an ICAM-1 specific 

antibody clearly showed an increase in the expression of ICAM-1 in the bronchial 

epithelium of SBE treated mice (Fig. 5B) compared to saline treated animals (Fig. 5A). The 

administration of G31P did not induce ICAM-1 (Fig. 5C), but in SBE-treated animals (Fig 

5D) it was able to inhibit the increased ICAM-expression, eliminating most if not all 

ICAM-1 staining of the bronchial epithelium.

Expression of CXCR1 and CXCR2 is reduced by G31P

As no previous work exists on the effect of G31P on its receptors CXCR1 and CXCR2, we 

examined their expression in our model. Expression of both CXCR1 and CXCR2 was 

readily apparent in the lung (Fig 6). Control saline-treated animals showed strong expression 

of both receptors on macrophages within the alveolar space (Fig. 6A, 6B). There was also 

staining within the alveolar walls, though this was not present through all cells. There was 

however clear staining of the bronchial epithelium. Administration of G31P (Fig. 6C, 6D) 

eliminated staining of both receptors in the alveolar walls and the bronchial epithelium, 

however alveolar macrophages still stained clearly for both receptors.

With SBE treated animals (Fig. 6C), there was a general increase of both receptors through 

all locations described above, with the exception of weaker (but still apparent) staining of 

the bronchial epithelium for CXCR2. SBE-treated animals given G31P (Fig. 6D) showed 

decreases in staining of both these receptors, particularly in the alveolar walls and the 
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bronchial epithelium, the latter of which showed only very faint staining for either receptor. 

As with the control + G31P animals, expression was still strong in cells within the alveolar 

space, however, we noted that unlike the SBE group not all of the cells in these alveolar 

spaces were stained.

Discussion

Lung inflammation and innate immune responses in the lung are a critical part of the 

immune system. These rapid and often vigorous responses are vital to the rapid containment 

and elimination of potential pathogens we are exposed to on a daily basis. Excessive 

inflammation in the lung however can rapidly lead to pathology and a loss of gas exchange 

function. Organic barn dusts represent an environmental exposure where such inflammatory 

responses may often be mal-adaptive. Immune responses to these dusts can be rapid 

(Gamage et al. 2007, 18; Dosman et al. 2004, 698–702) or prolonged and chronic 

(Senthilselvan et al. 1997, 1733–1741; Kirychuk et al. 2003, 375–380). Much of these 

responses appears directed to proteoglycans and lipopolysaccharides present in these dusts, 

signaling through toll-like receptors such as TLR2 and TLR4 (Reviewed in Poole and 

Romberger 2012, 126–132). In this case, no live organisms need be present to induce these 

vigorous innate responses.

A feature that has been shown to be critical in limiting lung inflammation is inhibiting the 

migration of neutrophils into the lung (Grommes and Soehnlein 2011, 293–307). As such, 

we examined the BALF of mice to determine if G31P had any effect on neutrophil migration 

in response to SBE. Total cell number in the BALF of SBE exposed animals was 

significantly elevated compared to control animals as others have shown (Poole et al. 2009, 

L1085–95), with the predominance of cells shifting from macrophages to neutrophils, 

indicating a large influx of these cells into the lungs, and presumably a more neutrophil-

driven response. Treatment with G31P prevented much of this cellular influx into the lung. 

While some of this influx may still be neutrophils, the predominant lavage cell by numbers 

is again the alveolar macrophage. This lowering of neutrophil migration, and presumed 

activation in the lung will also contribute to limiting lung inflammation and damage.

Cytokine and chemokine expression, particularly IL-8 and IL-6 are good indicators of lung 

inflammation. Increased production of IL-6 and KC are common with SBE exposure (Poole 

et al. 2009, L1085–95; Bailey et al. 2008, L1049–L1054; Wyatt et al. 2007, L1163–

L1170)and important in inducing cell migration and activation (Tsai et al. 1998, 2435–2440; 

Biffl et al. 1996, 575–8; discussion 578–9). In the mouse, the structurally similar KC, and 

the closely related chemokine MIP-2 cover the same functions as IL-8 in humans. KC is 

shown to bind CXCR1 while MIP-2 binds to CXCR2 (Ahuja, Lee, and Murphy 1996, 225–

232; Fan et al. 2007, 11658–11666), though other chemokines may bind each receptor. Both 

chemokines may act in an autocrine fashion (Vanderbilt et al. 2003, 661–668)so blocking 

cytokine/chemokine receptor binding may also reduce native chemokine production. 

Therefore, we wished to see if the G31P inhibitor could block the expression of new KC and 

MIP-2 expression, as both are strongly induced with SBE exposure. We showed that indeed 

G31P is effective at reducing the expression of both chemokines induced to SBE exposure 

as well as IL-6, the last of which is capable of activating a number of neutrophil 
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antimicrobial functions (Biffl et al. 1996, 575–8; discussion 578–9). Therefore, in 

considering G31P effectiveness we must also consider reduced KC, MIP-2, and IL-6 

expression due to reduced intracellular activation in the lungs as another possible reason for 

the reduced inflammation observed.

Previous work from our lab has established that exposure to SBE can induce the activation 

of PKC in cells, in particular PKCα and PKCε (Romberger et al. 2002, 289–296; Poole et al. 

2009, L1085–95; Poole et al. 2007, 366–373; Wyatt et al. 2007, L1163–L1170). As others 

have shown, PKCα may interact with TLR receptor via adaptor protein MyD88, and is 

critical in their signaling to increase downstream migration of transcription factors MAPK, 

NF-κB, and AP-1 to the nucleus (Langlet et al. 2010, 505–515). Similarly, PKCε is 

phosphorylated by all MyD88-associated TLRs and failure to do so results in a lack of NF-

κB induction (Faisal et al. 2008, 18591–18600). Therefore, both PKCs are good indicators 

of TLR activation and signaling and potentially have critical effects on TLR-induced 

immune responses. Our results show that G31P can significantly reduce activation of both 

PKCs in response to SBE. As a role has been established for MyD88 in the induction of both 

KC and MIP-2 (Langlet et al. 2010, 505–515; De Filippo et al. 2008, 4308–4315; 

Orlichenko et al. 2010, G867-G876) this may also explain the similarly reduced expression 

of both chemokines.

Expression of the receptor CXCR2 can be found in airway epithelium (Schulz et al. 2012, 

108–116; Farkas et al. 2005, 3724–3734), vascular endothelium (Schraufstatter, Chung, and 

Burger 2001, L1094–L1103), type-II cells (Vanderbilt et al. 2003, 661–668), and fibroblasts 

(Dunlevy and Couchman 1995, 311–321), many of which may be vital to neutrophil 

migration such as in the endothelium (Reutershan et al. 2006, 695–702). The research on 

CXCR1 in mice is more limited than in humans, due in part to a much later discovery of 

analogous function (Fan et al. 2007, 11658–11666). Binding CXCR1 or CXCR2 can induce 

internalization of these receptors that requires replacement of said receptors by protein 

synthesis (Cummings et al. 1999, 2341–2346). CXCR1 and CXCR2 mRNA expression was 

found to be induced by inflammatory stimuli coincident with increase of KC, GCP-2, and 

MIP-2 (Fan et al. 2007, 11658–11666). Because we showed that G31P can reduce 

expression of two of these chemokines, we postulated G31P could have an impact on 

expression of CXCR1 and CXCR2 proteins. We show that both receptors were expressed on 

the bronchial epithelium, some cells within the alveolar walls/septa, and cells within the 

alveolar space. Given our BALF results, these cells of the alveolar space should be 

macrophage as these are all we find in untreated animals. The positive cells within the 

alveoli septa are harder to clearly determine. The most likely candidates are type-II alveolar 

cells and/or fibroblasts (Vanderbilt et al. 2003, 661–668; Dunlevy and Couchman 1995, 

311–321). With G31P treatment, CXCR1 and CXCR2 expression appears to be eliminated 

or greatly reduced in all cells except the alveolar macrophages. These patterns of expression 

appeared to be similar but with much higher overall expression of CXCR1 and CXCR2 in 

SBE exposed animals. To rule out the possibility of G31P interfering with antibody binding 

to target proteins we tested antibody binding to purified CXCR1 and CXCR2 proteins via 

dot blot with and without G31P, noting no change in staining efficiency (data not shown). In 

SBE-treated animals, additional cells in the alveolar spaces were present and also stained 

positively for CXCR1 and CXCR2. Because our lavage data does not support an increase in 
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macrophages, these additional cells are likely neutrophils. As with the control animals, 

G31P treatment eliminated much of the staining for either receptor in the alveolar septa of 

SBE-treated animals, however this was not complete and some staining was still present. 

Bronchial epithelial cells, while clearly showing reduced CXCR1 and CXCR2 expression 

with G31P treatment also showed what appears to be a slight reduction in CXCR2 in SBE-

treated animals. While we know of no mention of this in the literature, CXCR2 reduction in 

sepsis as a result of slow receptor turnover has been demonstrated in neutrophils (Cummings 

et al. 1999, 2341–2346). While we did not see an apparent reduction of CXCR2 staining in 

the alveolar macrophages with G31P treatment, staining was so intense in these cells with all 

treatments that a more sensitive method may need to be employed to determine if such 

changes do take place.

Taken together we propose that the ability of G31P to inhibit inflammation and neutrophil 

migration into the lung may be mediated at several levels. Treatment prevents or greatly 

inhibits chemokine signaling to a number of cell types such as epithelial and type-II cells 

(Zhao et al. 2009, 3213–3222). This could then result in reduction in PKCα and PKCε 

activation and production of cytokines, chemokines, or receptor expression, such as 

ICAM-1, and CXCR1 and CXCR2. Reduced CXCR1 and CXCR2 expression would further 

limit potential stimulatory signaling. Reductions of both chemokines and ICAM-1, the latter 

of which is vital to neutrophil migration (Tosi et al. 1992, 214–221)and upregulated in 

response to organic dusts (Mathisen et al. 2004, 1738–1744)will reduce neutrophil 

migration. Finally, neutrophils reaching the lung will be deprived of important signals for 

cytokine production, degranulation, formation of reactive oxygen species, or survival 

through reduced chemokine signaling (Biffl et al. 1996, 575–8; discussion 578–9).

Whatever the precise mechanism, we show that the IL-8 analog G31P is effective at 

blocking several key indicators of lung inflammation in response to organic dusts, and may 

be a viable therapy to consider for chronic organic dust exposure-induced lung injury.
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Figure 1. 
Mean total of lung lavage fluid cells (A) and percent composition of macrophage (mac) and 

neutrophils (PMN) in lavage cells (B) after repeated nasal instillation with saline, SBE, 

G31P, or SBE+G31P. Error bars are SE (n=8 mice/group). ***P < 0.001, ****P < 0.0001
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Figure 2. 
Mean lung lavage fluid cytokine expression of KC (A), MIP-2 (B), and IL-6 (C). Error bars 

are SE (n=8 mice/group). **P < 0.01, ***P < 0.001
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Figure 3. 
PKC activity. Lung trachea (A and B) and lung slices (C and D) were measured for PKCa 

and PKCε activity from saline, SBE, G31P and SBE+G31P treated mice. **P < 0.01
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Figure 4. 
Hematoxylin and eosin staining of mouse lung from mice treated with saline (A), G31P (B), 

SBE (C), and SBE+G31P (D). No change was apparent in G31P treatment compared to 

Saline. SDE induced. SBE induced increased cellularity and peribronchial foci of 

mononuclear cells (arrow), both of which were reduced with G31P co-administration.
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Figure 5. 
ICAM-1 staining of mouse lung from mice treated with saline (A), G31P (B), SBE (C), and 

SBE+G31P (D). ICAM-1 (brown stain) was expressed on bronchial epithelium of SDE 

treated mouse lung, but eliminated with co-administration of G31P.
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Figure 6. 
Mouse lung staining for CXCR1 (A,C,E,G) and CXCR2 (B,D,F,H). Both receptors were 

clearly expressed in alveolar epithelium, bronchial epithelium, and alveolar macrophages. 

Levels of both receptors in Saline (A,B) appeared reduced in G31P treated animals (C,D), 

particularly in the bronchial epithelium (inset images). SDE treated animals (E,F) showed 

increased expression of both receptors, and G31P treatment (G,H) was able to reduce this, 

particularly in bronchial epithelium (inset images).

Schneberger et al. Page 18

Pulm Pharmacol Ther. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


